

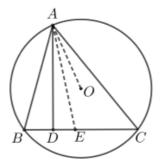
"Abbi pazienza, ché il mondo è vasto e largo" (Edwin A. Abbott)

Flatlandia – Problema – 9 - 30 marzo 2020 - Commento alle soluzioni ricevute

Il testo del problema

Sia O il circocentro del triangolo acutangolo ABC. Chiamato D il piede dell'altezza condotta da A sul lato BC, provare che la bisettrice AE dell'angolo $B\hat{A}C$ è anche bisettrice dell'angolo $D\hat{A}O$.

Motivare la risposta.



Commento

Sono arrivate 10 risposte prevalentemente da classi II di liceo scientifico.

Il problema poneva un quesito relativo a un triangolo acutangolo inscritto in una circonferenza e chiedeva di dimostrare che la bisettrice di un angolo in un vertice era anche bisettrice dell'angolo formato dall'altezza e dal raggio condotti dallo stesso vertice.

Le risposte giunte sono sostanzialmente tutte corrette e utilizzano note proprietà degli angoli di un triangolo e degli angoli alla circonferenza.

Ci preme però notare una certa "trascuratezza" in qualche risoluzione, dove non vengono ben evidenziati i motivi di certe affermazioni, mentre al contrario in qualche altra c'è viceversa una "sovrabbondanza" di passaggi che, ad un più attento esame, si sarebbero potuti ridurre di molto. L'ideale è poter giungere (tramite l'esercizio) ad un giusto equilibrio che consenta di arrivare ad una dimostrazione efficace ma anche sintetica.

Sono pervenute risposte dalle seguenti scuole:

- -Liceo Scientifico "A. Pacinotti", Cagliari
- -Liceo Scientifico internazionale "Aristosseno", Taranto
- -Liceo Scientifico "C. Cafiero", Barletta (BAT), 3 soluzioni
- -Liceo "A. Volta", Colle di Val d'Elsa (SI)
- -Liceo Scientifico "Nicolò Copernico", Torino
- -Liceo Scientifico "Barsanti e Matteucci", Viareggio (LU)
- -Liceo Scientifico "Galeazzo Alessi", Perugia
- -Liceo Ginnasio Statale "Giorgione", Castelfranco Veneto (TV)

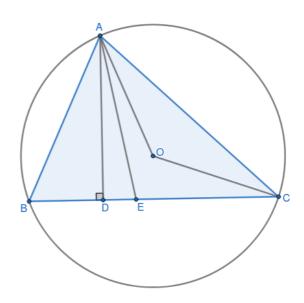
Nota. Nelle soluzioni riportate, le correzioni, le aggiunte o i commenti sono scritti fra parentesi quadre. Con doppia parentesi quadra vengono indicate le parti omesse.

Soluzioni arrivate

1)Soluzione proposta da Leo Cazzaniga, 2^I Liceo scientifico "A. Pacinotti", Cagliari

Ipotesi: $BAE \simeq EAC, AD \perp BC$

Tesi: DAE ≃ EAO



Dimostrazione

Si tracci il segmento OC.

Nel triangolo rettangolo ABD, la somma degli angoli acuti ABC + DAB è un angolo retto.

Il triangolo AOC è isoscele sulla base AC, poiché i lati AO e OC sono congruenti in quanto raggi della medesima circonferenza. Per la proprietà dei triangoli isosceli, gli angoli alla base sono congruenti, dunque $CAO \simeq ACO$.

Poiché la somma degli angoli interni di un triangolo è un angolo piatto, nel triangolo COA CAO + ACO + ACO è un angolo piatto.

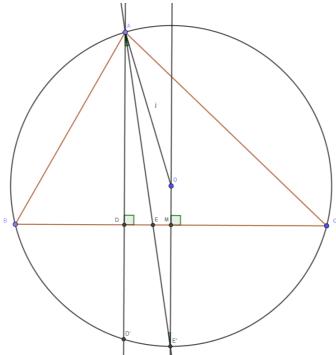
Siccome ogni angolo alla circonferenza è la metà del corrispondente angolo al centro $A\hat{D}C \simeq 2A\hat{B}C$, e ricordando che $C\hat{A}O \simeq A\hat{C}O$ e $C\hat{A}O + A\hat{C}O + A\hat{C}O$ [è un angolo piatto], possiamo affermare che [[$C\hat{A}O + A\hat{D}C$ e cioè]] [2 $C\hat{A}O + 2A\hat{B}C$]] è un angolo piatto e, dunque, $C\hat{A}O + A\hat{B}C$ è un angolo retto.

Come precedentemente dimostrato, ABC + DAB e CAO + ABC sono angoli retti. Allora $DAB \simeq CAO$ in quanto entrambi complementari di ABC.

Per ipotesi, $BAE \simeq EAC$.

Siccome $BAE \simeq EAD + DAB$ e $EAC \simeq CAO + OAE$, si ha quindi $EAD + DAB \simeq CAO + OAE$. Inoltre, poiché $DAB \simeq CAO$ (per precedente dimostrazione), si ha $EAD \simeq OAE$. È dunque dimostrato che AE biseca l'angolo DAO.

2)Soluzione proposta dalla classe 2^B Liceo scientifico internazionale "Aristosseno", Taranto

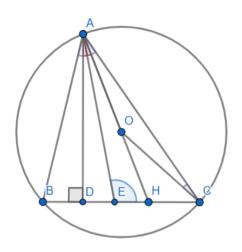


Il centro O della circonferenza è il punto d'incontro degli assi dei lati del triangolo ABC; il segmento OM, [dove M è punto medio della corda BC, è perpendicolare a BC] e divide in parti congruenti l'angolo al centro [[corrispondente]] \overline{BOC} e anche l'arco BC.

Essendo la semiretta di AE bisettrice dell'angolo alla circonferenza BAC, essa divide in due parti congruenti anche l'angolo al centro corrispondente \overline{BOC} (che è il suo doppio) e quindi l'arco BC. Per questo la corda AE' e il raggio OM si incontrano nello stesso punto E'.

Osserviamo ora che la corda AD' (ottenuta prolungando l'altezza AD del triangolo fino ad incontrare la circonferenza in D') e la retta contenente il raggio OE', entrambi perpendicolari a BC, sono parallele fra loro e quindi gli angoli $D^{T}AE^{T}$ e $AE^{T}O$ sono congruenti perché alterni interni rispetto alla trasversale AE'. Essendo poi il triangolo AOE' isoscele (i suoi lati OA e OE' sono raggi della stessa circonferenza) i suoi angoli alla base $AE^{T}O$ e OAE^{T} sono congruenti. Per la proprietà transitiva della congruenza l'angolo $D^{T}AE^{T}$ sarà quindi congruente all'angolo OAE^{T} e per questo nel triangolo ABC il segmento AE è anche bisettrice dell'angolo DAO.

3)Soluzione proposta da Maddalena Crapolicchio, classe 2^D Liceo Scientifico "C. Cafiero", Barletta(BAT)



Hp:

ABC triangolo acutangolo

BÂE≅ EÂC

 $AD \bot BC$

AO raggio circonferenza centro

Th:

EAD≅ EAH

DIMOSTRAZIONE:

Per il teorema dell'angolo esterno applicato [[al triangolo ADE risulta $A\hat{E}C = 90^{\circ} + E\hat{A}D$ e applicato al triangolo ABE risulta]]

$$\hat{AEC} = \hat{ABC} + \hat{BAE} \quad e \quad \rightarrow \quad \hat{ABC} + \hat{BAE} = 90^{\circ} + \hat{EAD} \quad (1)$$

Inoltre,[[per il teorema dell'angolo alla circonferenza e del corrispondente angolo al centro]]

$$A\widehat{B}C = \frac{1}{2}A\widehat{O}C$$

Ma $A\hat{O}\hat{C} = 180^{\circ} - 2H\hat{A}\hat{C} = 2(90^{\circ} - H\hat{A}\hat{C})$ perché AOC triangolo isoscele di base [AC] [[AB]] che ha come lati congruenti due raggi.

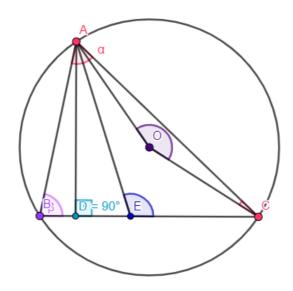
Quindi
$$A\widehat{B}C = \frac{1}{2} \cdot 2(90^{\circ} - H\widehat{A}C) = [90^{\circ} - HAC].$$

Sostituendo nella (1) si ottiene: $90^{\circ} - H\hat{A}C + B\hat{A}E = 90^{\circ} + E\hat{A}D \rightarrow$

 $B\hat{A}E - H\hat{A}C = E\hat{A}D$, $maB\hat{A}E - H\hat{A}C = E\hat{A}C - H\hat{A}C = E\hat{A}H$, quindi $E\hat{A}H = E\hat{A}D$

4)Soluzione proposta da Aurora Floriana Doronzo, classe 2[^] D Liceo Scientifico "C.Cafiero", Barletta(BAT)

Sia O il circocentro del triangolo acutangolo ABC. [Chiamato] D il piede dell'altezza condotta da A sul lato BC, provare che la bisettrice AE dell'angolo \overrightarrow{BAC} anche bisettrice dell'angolo \overrightarrow{DAO} . Motivare la risposta.



Ipotesi:

- O circocentro
- AD altezza relativa a BC
- $B\hat{A}E \cong E\hat{A}C$ [EAO]

Tesi: $D\hat{A}E \cong E\hat{A}C$

Chiamo:

$$B\hat{A}D = \alpha 1$$
 $D\hat{A}E = \alpha 2$ $E\hat{A}O = \alpha 3$ $O\widehat{AC} = \alpha 4$

$$B\hat{A}C = \alpha \quad A\hat{B}C = \beta \quad A\hat{E}C = \varepsilon$$

Considerando il triangolo rettangolo ABD:

$$\beta + \alpha 1 = 90^{\circ} \implies \beta = 90^{\circ} - \alpha 1$$

 $A\partial C \cong 2\beta$ perché angolo al centro e corrispondente angolo alla circonferenza

Il triangolo AOC è isoscele perché ha i lati AO e OC congruenti in quanto raggi della circonferenza di centro $O \Rightarrow O\hat{C}A \cong \alpha 4$

$$\hat{AOC} \cong 2\beta \cong 2(90 - \alpha 1) \cong 180 - 2\alpha 1$$

Inoltre A
$$\hat{Q}C \cong 180 - 2\alpha 4$$

Quindi 180 - $2\alpha 1 \cong 180 - 2\alpha 4 \Longrightarrow \alpha 1 \cong \alpha 4$

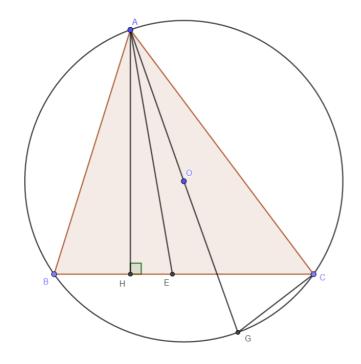
 $B\hat{A}E \cong E\hat{A}C$ per ipotesi

$$\alpha 1 + \alpha 2 \cong \alpha 3 + \alpha 4$$

$$\alpha 1 + \alpha 2 \cong \alpha 3 + \alpha 1$$

 $\alpha 2 \cong \alpha 3 \Longrightarrow AE$ è bisettrice di $D\hat{A}E [DAO]$.

5)Soluzione proposta da Giuseppe-Boccardi, classe 2^C, Liceo A. Volta-Colle di Val d'Elsa (SI)



IPOTESI

- ABC triangolo acutangolo
- O circocentro del triangolo ABC
- E∈ BC e AE bisettrice dell'angolo BÂC
- AH altezza condotta da A sul lato BC

TESI

 Gli angoli HÂE e EÂO sono congruenti

DIMOSTRAZIONE

- ➤ Prolunghiamo il segmento AO e chiamiamo G il punto di intersezione che si viene a creare tra la retta AO e la circonferenza
- > Tracciamo il segmento che congiunge i punti G e C. Possiamo notare che:
 - Gli angoli A \hat{G} C e A \hat{B} C sono congruenti in quanto angoli alla circonferenza che insistono sulla stessa corda

L'angolo AĈG è retto perché è un angolo alla circonferenza che insiste su di una semicirconferenza

➤ Mettendo insieme queste cose possiamo dire che:

$$GAC \cong 180^{\circ} - (90^{\circ} + ABC)$$

Da cui deriva che:

$$G\hat{A}C \cong 90^{\circ} - ABC$$

Consideriamo ora il triangolo BAH. Notiamo che L'angolo B \widehat{H} A è retto per ipotesi

Perciò possiamo scrivere che:

$$B\tilde{A}H \cong 180^{\circ} - (90^{\circ} + A\hat{B}C)$$

Da cui deriva che:

$$B\hat{A}H \approx 90^{\circ} - ABC$$

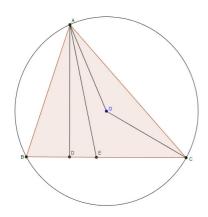
Per la proprietà transitiva possiamo quindi affermare che:

$GAC \cong BAH$

A questo punto possiamo affermare che l'angolo HÂ E è congruente all'angolo EÂ O perché differenza di angoli congruenti:

$$BAE \cong EAC \longrightarrow$$
 per ipotesi
 $BAH \cong GAC \longrightarrow$ per ché dimostrato precedentemente
 $HAE \cong BAE - BAH$
 $EAO \cong EAC - GAC$

6)Soluzione proposta da Nardiello Francesco Carlo, 2^C, Liceo scientifico Carlo Cafiero, Barletta



Hp: ABC triangolo $A^{\overline{D}}C=90^{\circ}$

Dimostrazione:

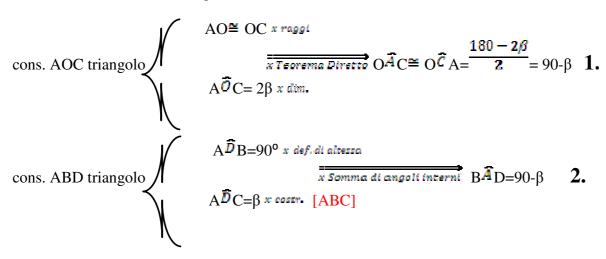
 $A^{\overline{D}}C=\beta \times costr.[ABC]$

O=Circocentro ABC triangolo

 $\mathbf{A} \mathbf{\bar{O}} \mathbf{C} = \mathbf{2} \mathbf{\beta}$ AE bisettrice $\mathbf{B} \mathbf{\bar{A}} \mathbf{C}$

O=Circocentro ABC triangolo * 12.

Th: AE bisettrice $D^{\overline{A}}O$



1.

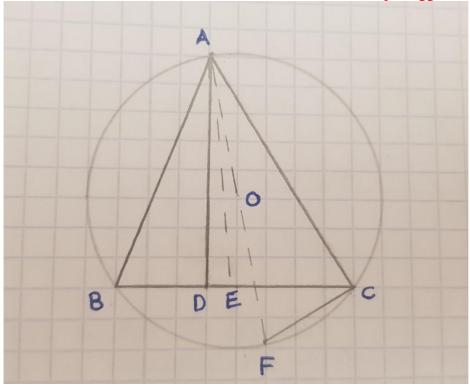
2. **Differenza di Angoli Congruenti**
$$O^{\overline{A}}E=[CAE-OAC]$$
 , $D^{\overline{A}}E=[BAE-BAD]$

***Def. di Bisettrice** AE bisettrice $D^{\overline{A}}O$
 $B^{\overline{A}}E=C^{\overline{A}}E=\alpha$

C.V.D.

7)Soluzione proposta da Alessia Roncucci, 3°F, liceo scientifico Nicolò Copernico, Torino

[Era preferibile fare la figura con un software di geometria. Nella soluzione, oltre ad alcuni errori facilmente evitabili con una attenta rilettura, ci sono alcuni passaggi non motivati.]

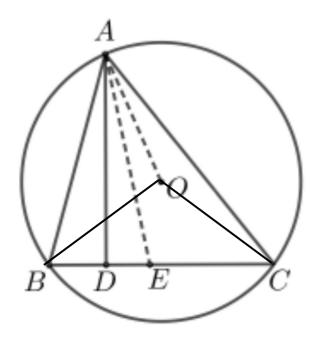


AFC è rettangolo come ABD

AFC è un triangolo rettangolo perché AF è un diametro quindi l'angolo [ACF=90°] [[AFC=90°]]. AFC e ABC sono congruenti perché angoli alla circonferenza che insistono sullo stesso arco AC I triangoli ABD e AFC sono simili, quindi BAD=FAC

Anche DAE=EAF [perché differenze di angoli congruenti] quindi AE è la bisettrice [di DAO].

8)Soluzione proposta da Margherita Zucchelli – 2^E – Liceo scientifico "Barsanti e Matteucci" – Viareggio (LU)



IPOTESI:

ABC = triangolo acutangolo

O = circocentro ABC

AD = altezza relativa a BC

AE = bisettrice angolo (BAC)

TESI:

AE bisettrice dell'angolo (DAO)

Poiché O è il circocentro per ipotesi segue che OA≅OB≅OC.

Considero i triangoli AOB, BOC, AOC. Essi sono tutti isosceli per precedente considerazione. Per proprietà dei triangoli isosceli \angle (OBC) \cong \angle (OCB), \angle (OCA) \cong \angle (OAC), \angle (OBA) \cong \angle (OAB). La somma dei 6 precedenti angoli coincide con la somma degli angoli interni del triangolo [ABC], quindi: $2 \angle$ (ABO)+ $2 \angle$ (OBC)+ $2 \angle$ (CAO)= $180^{\circ} \rightarrow$ [[$2 \angle$ (ABO)+ $2 \angle$ (OBC)+ $2 \angle$ (CAO)= $180^{\circ} \rightarrow$ [($2 \angle$ (CBO)+ $2 \angle$ (

 $\angle(DAE) \cong \angle(BAE) - \angle(BAD)$

 $\angle OAE) \cong \angle (CAE) - \angle (CAO)$

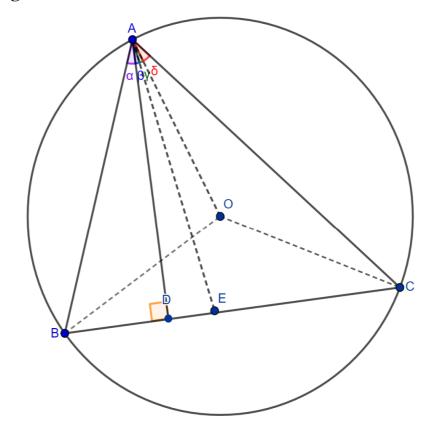
 \angle (BAE) \cong \angle (CAE) per definizione di bisettrice

 $\angle(BAD) \cong \angle(CAO)$ per precedente dimostrazione

∠(EAD) ≅∠(EAO) perché differenze di angoli congruenti

9)Soluzione proposta da Mario Solinas Classe 2L, Liceo Scientifico "Galeazzo Alessi" Perugia

Ipotesi



- O circocentro del triangolo acutangolo ABC 1
- D piede dell'altezza condotta da A sul lato BC ¹
- AE bisettrice dell'angolo BÂC

Tesi

• AE bisettrice dell'angolo DÂO

Dimostrazione

¹ Essendo il triangolo acutangolo ne segue che O è interno al triangolo ABC e D∈ BC. Nella dimostrazione , ad esempio, prendo in considerazione i triangoli BOC,AOC,AOB , perciò se O∈ BC (caso in cui il triangolo è rettangolo) non otterrei il triangolo BOC . Inoltre, se D non appartenesse a BC (caso in cui il triangolo è ottusangolo) non varrebbe la relazione $\hat{\alpha} + \hat{\beta} = \hat{\gamma} + \hat{\delta}$ (indicata nella dimostrazione).

Chiamiamo per convenzione gli angoli BÂD, DÂE, EÂO e OÂC rispettivamente $\overline{a}, \overline{b}, \overline{v}, \overline{\delta}$ e tracciamo i raggi OB e OC in modo tale da ottenere i triangoli isosceli BOC, AOC, AOB.

Per ipotesi abbiamo la relazione $\hat{\alpha} + \hat{\beta} = \hat{\gamma} + \hat{\delta}$ (AE bisettrice BÂC).

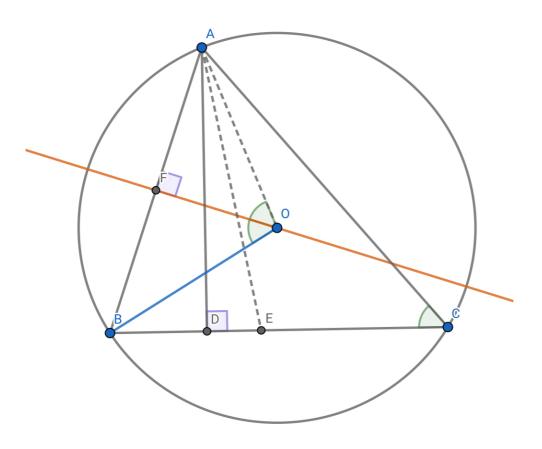
Consideriamo inizialmente il triangolo rettangolo per ipotesi ADE (D piede dell'altezza condotta da A sul lato BC) : $A^{\bar{E}}D=90-\bar{\beta}$. Segue che $A^{\bar{E}}C=180-(90-\bar{\beta})=90+\bar{\beta}$.

Prendiamo in considerazione ora il triangolo AEC, otteniamo che: $A^{\vec{E}}C = 90 + \vec{\delta}$ (per dimostrazione precedente), $A^{\vec{C}}E = 180 - (90 + \vec{\delta}) - (\vec{v} + \vec{\delta}) = 90 - \vec{\delta}$ $\vec{v} - \vec{\delta}$ (EÂO+ OÂC= $\vec{E}AC = \vec{V} + \vec{\delta}$). Da questo segue che O $\vec{C}B = 90 - \vec{\delta} - \vec{v} - \vec{\delta}$ (AOC isoscele, $O\vec{A}C = O\vec{C}A = \vec{\delta}$).

Consideriamo ora il triangolo rettangolo ABD retto in \hat{D} : $A\hat{B}D=90-\alpha$. Perciò otteniamo che $O\hat{B}C=90-\alpha-(\alpha+\beta+\gamma)=90-2\alpha-\beta-\gamma$ (AOB isoscele, $O\hat{B}A=O\hat{A}B=\alpha+\beta+\gamma$).

Consideriamo infine il triangolo isoscele OBC: $O^{\widehat{B}}C=O^{\widehat{C}}B$, ovvero $\mathbf{90-2}\widehat{\alpha}-\widehat{\beta}-\widehat{\gamma}=\mathbf{90-2}\widehat{\beta}-\widehat{\gamma}-2\widehat{\delta}$ Da questa uguaglianza otteniamo $\widehat{\alpha}=\widehat{\delta}$. Sostituiamo alla relazione iniziale $(\widehat{\alpha}+\widehat{\beta}=\widehat{\gamma}+\widehat{\delta})$ $\widehat{\alpha}=\widehat{\delta}$ $\rightarrow \widehat{\alpha}+\widehat{\beta}=\widehat{\gamma}+\widehat{\alpha}\rightarrow\widehat{\beta}=\widehat{\gamma}$. Da quest'ultima uguaglianza otteniamo infine che AE è bisettrice dell'angolo $D^{\widehat{A}}O$. C.V.D

10)Soluzione proposta da Perugini Alessandro 3^aASO, Liceo Ginnasio Statale Giorgione, Castelfranco Veneto (TV)



Hp:
O circocentro triangolo ABC
ABC triangolo acutangolo
AD altezza da A di BC
AE bisettrice BÂC

Th:

AE bisettrice DÂO

Dimostrazione:

Considero angolo AĈB

AĈB è la metà dell'angolo AÔB (AÔB angolo al centro della circonferenza)

OF asse di AB (per ipotesi O è il circocentro)

AÔF congruente a FÔB (angolo AÔB diviso a metà dall'asse, perché triangolo AOB è isoscele e l'altezza OF è anche bisettrice)

Di conseguenza AÔF è congruente a metà AÔB

Se l'angolo AĈB è congruente a metà angolo AÔB, e anche AÔF lo è, l'angolo AĈB è congruente all'angolo AÔF

Considero i triangoli ADC e AFO:

Entrambi hanno un angolo retto (AFO perché l'intersezione dell'asse col segmento, mentre ADC per ipotesi)

Înoltre AÔF è congruente a AĈD (per dimostrazione precedente)

Di conseguenza, dato che la somma degli angoli interni di un triangolo è sempre 180°, per differenza di angoli congruenti, l'angolo <u>OÂF è congruente all'angolo DÂC</u>

L'angolo <u>BÂE è congruente all'angolo EÂC</u> (per ipotesi AE è la bisettrice [dell'angolo BÂC]).

Considero gli angoli OÂE=OÂF-BÂE e DÂE=DÂC-EÂC; l'angolo OÂE è congruente all'angolo DÂE (per quanto dimostrato precedentemente e sottolineato sono congruenti per differenza di angoli congruenti)

Di conseguenza AE è bisettrice dell'angolo DÂO (lo divide in due angoli congruenti).